Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167193, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38648902

ABSTRACT

SARS-CoV-2 infection can cause severe pneumonia, wherein exacerbated inflammation plays a major role. This is reminiscent of the process commonly termed cytokine storm, a condition dependent on a disproportionated production of cytokines. This state involves the activation of the innate immune response by viral patterns and coincides with the biosynthesis of the biomass required for viral replication, which may overwhelm the capacity of the endoplasmic reticulum and drive the unfolded protein response (UPR). The UPR is a signal transduction pathway composed of three branches that is initiated by a set of sensors: inositol-requiring protein 1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor 6 (ATF6). These sensors control adaptive processes, including the transcriptional regulation of proinflammatory cytokines. Based on this background, the role of the UPR in SARS-CoV-2 replication and the ensuing inflammatory response was investigated using in vivo and in vitro models of infection. Mice and Syrian hamsters infected with SARS-CoV-2 showed a sole activation of the Ire1α-Xbp1 arm of the UPR associated with a robust production of proinflammatory cytokines. Human lung epithelial cells showed the dependence of viral replication on the expression of UPR-target proteins branching on the IRE1α-XBP1 arm and to a lower extent on the PERK route. Likewise, activation of the IRE1α-XBP1 branch by Spike (S) proteins from different variants of concern was a uniform finding. These results show that the IRE1α-XBP1 system enhances viral replication and cytokine expression and may represent a potential therapeutic target in SARS-CoV-2 severe pneumonia.

2.
Cell Death Differ ; 31(1): 28-39, 2024 01.
Article in English | MEDLINE | ID: mdl-38001254

ABSTRACT

The ability of cells to mount an interferon response to virus infections depends on intracellular nucleic acid sensing pattern recognition receptors (PRRs). RIG-I is an intracellular PRR that binds short double-stranded viral RNAs to trigger MAVS-dependent signalling. The RIG-I/MAVS signalling complex requires the coordinated activity of multiple kinases and E3 ubiquitin ligases to activate the transcription factors that drive type I and type III interferon production from infected cells. The linear ubiquitin chain assembly complex (LUBAC) regulates the activity of multiple receptor signalling pathways in both ligase-dependent and -independent ways. Here, we show that the three proteins that constitute LUBAC have separate functions in regulating RIG-I signalling. Both HOIP, the E3 ligase capable of generating M1-ubiquitin chains, and LUBAC accessory protein HOIL-1 are required for viral RNA sensing by RIG-I. The third LUBAC component, SHARPIN, is not required for RIG-I signalling. These data cement the role of LUBAC as a positive regulator of RIG-I signalling and as an important component of antiviral innate immune responses.


Subject(s)
RNA Viruses , Ubiquitin-Protein Ligases , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Signal Transduction , DEAD Box Protein 58/genetics , RNA Viruses/metabolism
3.
mBio ; 14(5): e0093423, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37732809

ABSTRACT

IMPORTANCE: One of the fundamental features that make viruses intracellular parasites is the necessity to use cellular translational machinery. Hence, this is a crucial checkpoint for controlling infections. Here, we show that dengue and Zika viruses, responsible for nearly 400 million infections every year worldwide, explore such control for optimal replication. Using immunocompetent cells, we demonstrate that arrest of protein translations happens after sensing of dsRNA and that the information required to avoid this blocking is contained in viral 5'-UTR. Our work, therefore, suggests that the non-canonical translation described for these viruses is engaged when the intracellular stress response is activated.


Subject(s)
Dengue Virus , Stress, Physiological , Virus Replication , Zika Virus , eIF-2 Kinase , Animals , Humans , A549 Cells , Chlorocebus aethiops , Dengue/immunology , Dengue/virology , Dengue Virus/physiology , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Eukaryotic Initiation Factor-2/metabolism , Gene Deletion , Protein Biosynthesis/genetics , Protein Biosynthesis/immunology , Stress, Physiological/genetics , Stress, Physiological/immunology , Vero Cells , Virus Replication/genetics , Virus Replication/immunology , Zika Virus/physiology , Zika Virus Infection/immunology , Zika Virus Infection/virology , RNA, Double-Stranded/metabolism
4.
Sci Rep ; 13(1): 12079, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495730

ABSTRACT

Collections of genetic sequences belonging to related organisms contain information on the evolutionary constraints to which the organisms have been subjected. Heavily constrained regions can be investigated to understand their roles in an organism's life cycle, and drugs can be sought to disrupt these roles. In organisms with low genetic diversity, such as newly-emerged pathogens, it is key to obtain this information early to develop new treatments. Here, we present methods that ensure we can leverage all the information available in a low-signal, low-noise set of sequences, to find contiguous regions of relatively conserved nucleic acid. We demonstrate the application of these methods by analysing over 5 million genome sequences of the recently-emerged RNA virus SARS-CoV-2 and correlating these results with an analysis of 119 genome sequences of SARS-CoV. We propose the precise location of a previously described packaging signal, and discuss explanations for other regions of high conservation.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Nucleotide Motifs , Sequence Alignment , Genome, Viral , Severe acute respiratory syndrome-related coronavirus/genetics
5.
Front Immunol ; 14: 1120298, 2023.
Article in English | MEDLINE | ID: mdl-36993979

ABSTRACT

The co-occurrence and the similarities between malaria and COVID-19 diseases raise the question of whether SARS-CoV-2 is capable of infecting red blood cells and, if so, whether these cells represent a competent niche for the virus. In this study, we first tested whether CD147 functions as an alternative receptor of SARS-CoV-2 to infect host cells. Our results show that transient expression of ACE2 but not CD147 in HEK293T allows SARS-CoV-2 pseudoviruses entry and infection. Secondly, using a SARS-CoV-2 wild type virus isolate we tested whether the new coronavirus could bind and enter erythrocytes. Here, we report that 10,94% of red blood cells had SARS-CoV-2 bound to the membrane or inside the cell. Finally, we hypothesized that the presence of the malaria parasite, Plasmodium falciparum, could make erythrocytes more vulnerable to SARS-CoV-2 infection due to red blood cell membrane remodelling. However, we found a low coinfection rate (9,13%), suggesting that P. falciparum would not facilitate the entry of SARS-CoV-2 virus into malaria-infected erythrocytes. Besides, the presence of SARS-CoV-2 in a P. falciparum blood culture did not affect the survival or growth rate of the malaria parasite. Our results are significant because they do not support the role of CD147 in SARS-CoV-2 infection, and indicate, that mature erythrocytes would not be an important reservoir for the virus in our body, although they can be transiently infected.


Subject(s)
COVID-19 , Coinfection , Malaria, Falciparum , Humans , SARS-CoV-2 , Plasmodium falciparum , HEK293 Cells , Malaria, Falciparum/parasitology , Erythrocytes
6.
Front Public Health ; 10: 1048404, 2022.
Article in English | MEDLINE | ID: mdl-36579069

ABSTRACT

Africa accounts for 1.5% of the global coronavirus disease 2019 (COVID-19) cases and 2.7% of deaths, but this low incidence has been partly attributed to the limited testing capacity in most countries. In addition, the population in many African countries is at high risk of infection with endemic infectious diseases such as malaria. Our aim is to determine the prevalence and circulation of SARS-CoV-2 variants, and the frequency of co-infection with the malaria parasite. We conducted serological tests and microscopy examinations on 998 volunteers of different ages and sexes in a random and stratified population sample in Burkina-Faso. In addition, nasopharyngeal samples were taken for RT-qPCR of SARS-CoV-2 and for whole viral genome sequencing. Our results show a 3.2 and a 2.5% of SARS-CoV-2 seroprevalence and PCR positivity; and 22% of malaria incidence, over the sampling period, with marked differences linked to age. Importantly, we found 8 cases of confirmed co-infection and 11 cases of suspected co-infection mostly in children and teenagers. Finally, we report the genome sequences of 13 SARS-CoV-2 isolates circulating in Burkina Faso at the time of analysis, assigned to lineages A.19, A.21, B.1.1.404, B.1.1.118, B.1 and grouped into clades; 19B, 20A, and 20B. This is the first population-based study about SARS-CoV-2 and malaria in Burkina Faso during the first wave of the pandemic, providing a relevant estimation of the real prevalence of SARS-CoV-2 and variants circulating in this Western African country. Besides, it highlights the non-negligible frequency of co-infection with malaria in African communities.


Subject(s)
COVID-19 , Coinfection , Malaria , Child , Adolescent , Humans , SARS-CoV-2 , Burkina Faso/epidemiology , Prevalence , COVID-19/epidemiology , Pandemics , Coinfection/epidemiology , Seroepidemiologic Studies , Malaria/epidemiology
7.
Front Cell Neurosci ; 15: 695106, 2021.
Article in English | MEDLINE | ID: mdl-34658789

ABSTRACT

Despite being perceived to be a relatively innocuous pathogen during its circulation in Africa in the 20th century, consequent outbreaks in French Polynesia and Latin America revealed the Zika virus (ZIKV) to be capable of causing severe neurological defects. Foetuses infected with the virus during pregnancy developed a range of pathologies including microcephaly, cerebral calcifications and macular scarring. These are now collectively known as Congenital Zika syndrome (CZS). It has been established that the neuropathogenesis of ZIKV results from infection of neural progenitor cells in the developing cerebral cortex. Following this, two main hypotheses have emerged: the virus causes either apoptosis or premature differentiation of neural progenitor cells, reducing the final number of mature neurons in the cerebral cortex. This review describes the cellular processes which could potentially cause virus induced apoptosis or premature differentiation, leading to speculation that a combination of the two may be responsible for the pathologies associated with ZIKV. The review also discusses which specific lineages of the ZIKV can employ these mechanisms. It has been unclear in the past whether the virus evolved its neurotropic capability following circulation in Africa, or if the virus has always caused microcephaly but public health surveillance in Africa had failed to detect it. Understanding the true neuropathogenesis of ZIKV is key to being prepared for further outbreaks in the future, and it will also provide insight into how neurotropic viruses can cause profound and life-long neurological defects.

8.
PLoS Pathog ; 17(6): e1009644, 2021 06.
Article in English | MEDLINE | ID: mdl-34138976

ABSTRACT

Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Murine hepatitis virus/drug effects , Unfolded Protein Response/drug effects , Activating Transcription Factor 6/metabolism , Animals , Antiviral Agents/therapeutic use , Cell Line , Chlorocebus aethiops , Drug Delivery Systems , Endoribonucleases/metabolism , HEK293 Cells , Humans , Mice , Protein Serine-Threonine Kinases/metabolism , RNA-Seq , Vero Cells , Viral Proteins/metabolism , Virus Replication/drug effects
9.
Nature ; 593(7860): 597-601, 2021 05.
Article in English | MEDLINE | ID: mdl-33902106

ABSTRACT

N6-methyladenosine (m6A) is an abundant internal RNA modification1,2 that is catalysed predominantly by the METTL3-METTL14 methyltransferase complex3,4. The m6A methyltransferase METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but the potential of therapeutic applications targeting this enzyme remains unknown5-7. Here we present the identification and characterization of STM2457, a highly potent and selective first-in-class catalytic inhibitor of METTL3, and a crystal structure of STM2457 in complex with METTL3-METTL14. Treatment of tumours with STM2457 leads to reduced AML growth and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m6A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various mouse models of AML, specifically targeting key stem cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA-modifying enzymes represents a promising avenue for anticancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Methyltransferases/antagonists & inhibitors , Adenosine/analogs & derivatives , Animals , Apoptosis , Cell Differentiation , Cell Line, Tumor , Female , Gene Expression Regulation, Leukemic/drug effects , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , Xenograft Model Antitumor Assays
10.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: mdl-32938763

ABSTRACT

Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an in vitro reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo.IMPORTANCE Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanocages for gene therapy and targeted drug delivery in humans.


Subject(s)
Capsid Proteins/chemistry , Capsid/ultrastructure , Cryoelectron Microscopy/methods , Picobirnavirus/genetics , Picobirnavirus/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Genome, Viral , Humans , Models, Molecular , Protein Conformation , Protein Conformation, alpha-Helical , Protein Domains , RNA, Double-Stranded , Virion/ultrastructure , Virus Assembly
11.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32559462

ABSTRACT

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Subject(s)
RNA Caps/genetics , RNA Virus Infections/genetics , Recombinant Fusion Proteins/genetics , 5' Untranslated Regions/genetics , Animals , Cattle , Cell Line , Cricetinae , Dogs , Humans , Influenza A virus/metabolism , Mice , Mutant Chimeric Proteins/genetics , Mutant Chimeric Proteins/metabolism , Open Reading Frames/genetics , RNA Caps/metabolism , RNA Virus Infections/metabolism , RNA Viruses/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Recombinant Fusion Proteins/metabolism , Transcription, Genetic/genetics , Viral Proteins/metabolism , Virus Replication/genetics
12.
Nat Microbiol ; 4(2): 280-292, 2019 02.
Article in English | MEDLINE | ID: mdl-30478287

ABSTRACT

Enteroviruses comprise a large group of mammalian pathogens that includes poliovirus. Pathology in humans ranges from sub-clinical to acute flaccid paralysis, myocarditis and meningitis. Until now, all of the enteroviral proteins were thought to derive from the proteolytic processing of a polyprotein encoded in a single open reading frame. Here we report that many enterovirus genomes also harbour an upstream open reading frame (uORF) that is subject to strong purifying selection. Using echovirus 7 and poliovirus 1, we confirmed the expression of uORF protein in infected cells. Through ribosome profiling (a technique for the global footprinting of translating ribosomes), we also demonstrated translation of the uORF in representative members of the predominant human enterovirus species, namely Enterovirus A, B and C. In differentiated human intestinal organoids, uORF protein-knockout echoviruses are attenuated compared to the wild-type at late stages of infection where membrane-associated uORF protein facilitates virus release. Thus, we have identified a previously unknown enterovirus protein that facilitates virus growth in gut epithelial cells-the site of initial viral invasion into susceptible hosts. These findings overturn the 50-year-old dogma that enteroviruses use a single-polyprotein gene expression strategy and have important implications for the understanding of enterovirus pathogenesis.


Subject(s)
Enterovirus Infections/virology , Enterovirus/genetics , Enterovirus/pathogenicity , Intestinal Mucosa/virology , Open Reading Frames/physiology , Viral Proteins/metabolism , Cell Line , Cell Membrane/metabolism , Enterovirus/classification , Gene Expression , Gene Knockout Techniques , Genome, Viral/genetics , Humans , Mutation , Open Reading Frames/genetics , Organoids/virology , Phylogeny , Protein Biosynthesis , RNA, Viral/genetics , RNA, Viral/metabolism , Selection, Genetic , Viral Proteins/genetics , Virus Release
13.
J Virol ; 92(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29950409

ABSTRACT

The genus Torovirus (subfamily Torovirinae, family Coronaviridae, order Nidovirales) encompasses a range of species that infect domestic ungulates, including cattle, sheep, goats, pigs, and horses, causing an acute self-limiting gastroenteritis. Using the prototype species equine torovirus (EToV), we performed parallel RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) to analyze the relative expression levels of the known torovirus proteins and transcripts, chimeric sequences produced via discontinuous RNA synthesis (a characteristic of the nidovirus replication cycle), and changes in host transcription and translation as a result of EToV infection. RNA sequencing confirmed that EToV utilizes a unique combination of discontinuous and nondiscontinuous RNA synthesis to produce its subgenomic RNAs (sgRNAs); indeed, we identified transcripts arising from both mechanisms that would result in sgRNAs encoding the nucleocapsid. Our ribosome profiling analysis revealed that ribosomes efficiently translate two novel CUG-initiated open reading frames (ORFs), located within the so-called 5' untranslated region. We have termed the resulting proteins U1 and U2. Comparative genomic analysis confirmed that these ORFs are conserved across all available torovirus sequences, and the inferred amino acid sequences are subject to purifying selection, indicating that U1 and U2 are functionally relevant. This study provides the first high-resolution analysis of transcription and translation in this neglected group of livestock pathogens.IMPORTANCE Toroviruses infect cattle, goats, pigs, and horses worldwide and can cause gastrointestinal disease. There is no treatment or vaccine, and their ability to spill over into humans has not been assessed. These viruses are related to important human pathogens, including severe acute respiratory syndrome (SARS) coronavirus, and they share some common features; however, the mechanism that they use to produce sgRNA molecules differs. Here, we performed deep sequencing to determine how equine torovirus produces sgRNAs. In doing so, we also identified two previously unknown open reading frames "hidden" within the genome. Together these results highlight the similarities and differences between this domestic animal virus and related pathogens of humans and livestock.


Subject(s)
Gene Expression Profiling , Protein Biosynthesis , Torovirus/growth & development , Torovirus/genetics , Transcription, Genetic , Viral Proteins/biosynthesis , Animals , Cells, Cultured , Horses , Host-Pathogen Interactions , Sequence Analysis, RNA , Viral Proteins/genetics , Virus Cultivation
14.
Retrovirology ; 15(1): 10, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29357872

ABSTRACT

BACKGROUND: The retrovirus murine leukemia virus (MuLV) has an 8.3 kb RNA genome with a simple 5'-gag-pol-env-3' architecture. Translation of the pol gene is dependent upon readthrough of the gag UAG stop codon; whereas the env gene is translated from spliced mRNA transcripts. Here, we report the first high resolution analysis of retrovirus gene expression through tandem ribosome profiling (RiboSeq) and RNA sequencing (RNASeq) of MuLV-infected cells. RESULTS: Ribosome profiling of MuLV-infected cells was performed, using the translational inhibitors harringtonine and cycloheximide to distinguish initiating and elongating ribosomes, respectively. Meta-analyses of host cell gene expression demonstrated that the RiboSeq datasets specifically captured the footprints of translating ribosomes at high resolution. Direct measurement of ribosomal occupancy of the MuLV genomic RNA indicated that ~ 7% of ribosomes undergo gag stop codon readthrough to access the pol gene. Initiation of translation was found to occur at several additional sites within the 5' leaders of the gag and env transcripts, upstream of their respective annotated start codons. CONCLUSIONS: These experiments reveal the existence of a number of previously uncharacterised, ribosomally occupied open reading frames within the MuLV genome, with possible regulatory consequences. In addition, we provide the first direct measurements of stop codon readthrough efficiency during cellular infection.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Viral , Leukemia Virus, Murine/genetics , Ribosomes/metabolism , Animals , Cell Line , HEK293 Cells , Humans , Mice , Protein Biosynthesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Sequence Analysis, RNA , Time Factors , Transcription, Genetic
15.
PLoS Pathog ; 12(2): e1005473, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26919232

ABSTRACT

Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal frameshift site. To our knowledge this is the first application of ribosome profiling to an RNA virus.


Subject(s)
Gene Expression Regulation, Viral , Murine hepatitis virus/metabolism , RNA, Messenger/metabolism , RNA, Viral/metabolism , Ribosomes/metabolism , Viral Proteins/metabolism , Animals , Cell Line , Frameshifting, Ribosomal , Gene Expression Profiling , Kinetics , Mesocricetus , Mice , Murine hepatitis virus/enzymology , Open Reading Frames , Protein Biosynthesis , RNA, Messenger/chemistry , RNA, Viral/chemistry , Restriction Mapping/methods , Sequence Analysis, RNA , Transcription, Genetic , Transcriptome , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Physiological Phenomena
16.
RNA ; 21(10): 1731-45, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26286745

ABSTRACT

Ribosome profiling is a technique that permits genome-wide, quantitative analysis of translation and has found broad application in recent years. Here we describe a modified profiling protocol and software package designed to benefit more broadly the translation community in terms of simplicity and utility. The protocol, applicable to diverse organisms, including organelles, is based largely on previously published profiling methodologies, but uses duplex-specific nuclease (DSN) as a convenient, species-independent way to reduce rRNA contamination. We show that DSN-based depletion compares favorably with other commonly used rRNA depletion strategies and introduces little bias. The profiling protocol typically produces high levels of triplet periodicity, facilitating the detection of coding sequences, including upstream, downstream, and overlapping open reading frames (ORFs) and an alternative ribosome conformation evident during termination of protein synthesis. In addition, we provide a software package that presents a set of methods for parsing ribosomal profiling data from multiple samples, aligning reads to coding sequences, inferring alternative ORFs, and plotting average and transcript-specific aspects of the data. Methods are also provided for extracting the data in a form suitable for differential analysis of translation and translational efficiency.


Subject(s)
Endonucleases/metabolism , Ribosomes/metabolism , Software , Chlamydomonas reinhardtii/genetics , Computational Biology , Open Reading Frames
17.
J Virol ; 88(18): 10364-76, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24991001

ABSTRACT

UNLABELLED: Translational readthrough--suppression of termination at a stop codon--is exploited in the replication cycles of several viruses and represents a potential target for antiviral intervention. In the gammaretroviruses, typified by Moloney murine leukemia virus (MuLV), gag and pol are in the same reading frame, separated by a UAG stop codon, and termination codon readthrough is required for expression of the viral Gag-Pol fusion protein. Here, we investigated the effect on MuLV replication of modulating readthrough efficiency. We began by manipulating the readthrough signal in the context of an infectious viral clone to generate a series of MuLV variants in which readthrough was stimulated or reduced. In carefully controlled infectivity assays, it was found that reducing the MuLV readthrough efficiency only 4-fold led to a marked defect and that a 10-fold reduction essentially abolished replication. However, up to an ∼ 8.5-fold stimulation of readthrough (up to 60% readthrough) was well tolerated by the virus. These high levels of readthrough were achieved using a two-plasmid system, with Gag and Gag-Pol expressed from separate infectious clones. We also modulated readthrough by silencing expression of eukaryotic release factors 1 and 3 (eRF1 and eRF3) or by introducing aminoglycosides into the cells. The data obtained indicate that gammaretroviruses tolerate a substantial excess of viral Gag-Pol synthesis but are very sensitive to a reduction in levels of this polyprotein. Thus, as is also the case for ribosomal frameshifting, antiviral therapies targeting readthrough with inhibitory agents are likely to be the most beneficial. IMPORTANCE: Many pathogenic RNA viruses and retroviruses use ribosomal frameshifting or stop codon readthrough to regulate expression of their replicase enzymes. These translational "recoding" processes are potential targets for antiviral intervention, but we have only a limited understanding of the consequences to virus replication of modulating the efficiency of recoding, particularly for those viruses employing readthrough. In this paper, we describe the first systematic analysis of the effect of increasing or decreasing readthrough efficiency on virus replication using the gammaretrovirus MuLV as a model system. We find unexpectedly that MuLV replication is only slightly inhibited by substantial increases in readthrough frequency, but as with other viruses that use recoding strategies, replication is quite sensitive to even modest reductions. These studies provide insights into both the readthrough process and MuLV replication and have implications for the selection of antivirals against gammaretroviruses.


Subject(s)
Codon, Terminator/genetics , Leukemia Virus, Murine/genetics , Protein Biosynthesis , Retroviridae Infections/veterinary , Virus Replication , Animals , Fusion Proteins, gag-pol/genetics , Fusion Proteins, gag-pol/metabolism , Gene Expression Regulation, Viral , Leukemia Virus, Murine/physiology , Mice , Retroviridae Infections/virology , Rodent Diseases
18.
Biophys J ; 106(3): 687-95, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24507609

ABSTRACT

Vaults are the largest ribonucleoprotein particles found in eukaryotic cells, with an unclear cellular function and promising applications as vehicles for drug delivery. In this article, we examine the local stiffness of individual vaults and probe their structural stability with atomic force microscopy under physiological conditions. Our data show that the barrel, the central part of the vault, governs both the stiffness and mechanical strength of these particles. In addition, we induce single-protein fractures in the barrel shell and monitor their temporal evolution. Our high-resolution atomic force microscopy topographies show that these fractures occur along the contacts between two major vault proteins and disappear over time. This unprecedented systematic self-healing mechanism, which enables these particles to reversibly adapt to certain geometric constraints, might help vaults safely pass through the nuclear pore complex and potentiate their role as self-reparable nanocontainers.


Subject(s)
Elasticity , Vault Ribonucleoprotein Particles/chemistry , Stress, Mechanical
19.
J Virol ; 86(21): 11581-94, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22896611

ABSTRACT

Programmed -1 ribosomal frameshifting is widely used in the expression of RNA virus replicases and represents a potential target for antiviral intervention. There is interest in determining the extent to which frameshifting efficiency can be modulated before virus replication is compromised, and we have addressed this question using the alpharetrovirus Rous sarcoma virus (RSV) as a model system. In RSV, frameshifting is essential in the production of the Gag-Pol polyprotein from the overlapping gag and pol coding sequences. The frameshift signal is composed of two elements, a heptanucleotide slippery sequence and, just downstream, a stimulatory RNA structure that has been proposed to be an RNA pseudoknot. Point mutations were introduced into the frameshift signal of an infectious RSV clone, and virus replication was monitored following transfection and subsequent infection of susceptible cells. The introduced mutations were designed to generate a range of frameshifting efficiencies, yet with minimal impact on encoded amino acids. Our results reveal that point mutations leading to a 3-fold decrease in frameshifting efficiency noticeably reduce virus replication and that further reduction is severely inhibitory. In contrast, a 3-fold stimulation of frameshifting is well tolerated. These observations suggest that small-molecule inhibitors of frameshifting are likely to have potential as agents for antiviral intervention. During the course of this work, we were able to confirm, for the first time in vivo, that the RSV stimulatory RNA is indeed an RNA pseudoknot but that the pseudoknot per se is not absolutely required for virus viability.


Subject(s)
Frameshifting, Ribosomal , Rous sarcoma virus/physiology , Virus Replication , Base Sequence , Gene Products, gag/biosynthesis , Gene Products, pol/biosynthesis , Nucleic Acid Conformation , Point Mutation , RNA, Viral/chemistry , RNA, Viral/genetics , Rous sarcoma virus/genetics
20.
J Biol Chem ; 287(29): 24473-82, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22619177

ABSTRACT

In many viruses, a precursor particle, or procapsid, is assembled and undergoes massive chemical and physical modification to produce the infectious capsid. Capsid assembly and maturation are finely tuned processes in which viral and host factors participate. We show that the precursor of the VP2 capsid protein (pVP2) of the infectious bursal disease virus (IBDV), a double-stranded RNA virus, is processed at the C-terminal domain (CTD) by a host protease, the puromycin-sensitive aminopeptidase (PurSA). The pVP2 CTD (71 residues) has an important role in determining the various conformations of VP2 (441 residues) that build the T = 13 complex capsid. pVP2 CTD activity is controlled by co- and posttranslational proteolytic modifications of different targets by the VP4 viral protease and by VP2 itself to yield the mature VP2-441 species. Puromycin-sensitive aminopeptidase is responsible for the peptidase activity that cleaves the Arg-452-Arg-453 bond to generate the intermediate pVP2-452 polypeptide. A pVP2 R453A substitution abrogates PurSA activity. We used a baculovirus-based system to express the IBDV polyprotein in insect cells and found inefficient formation of virus-like particles similar to IBDV virions, which correlates with the absence of puromycin-sensitive aminopeptidase in these cells. Virus-like particle assembly was nonetheless rescued efficiently by coexpression of chicken PurSA or pVP2-452 protein. Silencing or pharmacological inhibition of puromycin-sensitive aminopeptidase activity in cell lines permissive for IBDV replication caused a major blockade in assembly and/or maturation of infectious IBDV particles, as virus yields were reduced markedly. PurSA activity is thus essential for IBDV replication.


Subject(s)
Aminopeptidases/metabolism , Capsid Proteins/metabolism , Infectious bursal disease virus/physiology , Peptide Hydrolases/metabolism , RNA Viruses/physiology , Virus Assembly/physiology , Virus Replication/physiology , Aminopeptidases/drug effects , Animals , Capsid Proteins/drug effects , Cell Line , Dogs , Infectious bursal disease virus/drug effects , Peptide Hydrolases/drug effects , Puromycin/pharmacology , RNA Viruses/drug effects , RNA, Double-Stranded/genetics , Virus Assembly/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...